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Abstract

In this paper, we propose a new discriminative frame-
work based on Hough forests that enables us to efficiently
recognize and localize sequential data in the form of spatio-
temporal trajectories. Contrary to traditional decision
forest-based methods where predictions are made indepen-
dently of its output temporal context, we introduce the con-
cept of "transition”, which enforces the temporal coher-
ence of estimations and further enhances the discrimina-
tion between action classes. We start applying our pro-
posed framework to the problem of recognizing and local-
izing fingertip written trajectories in mid-air using an ego-
centric camera. To this purpose, we present a new chal-
lenging dataset that allows us to evaluate and compare our
method with previous approaches. Finally, we apply our
framework to general human action recognition using local
spatio-temporal trajectories obtaining comparable to state-
of-the-art performance on a public benchmark.

1. Introduction

A human action can be seen as an ensemble of spatio-
temporal trajectories that describe human motion. Trajecto-
ries can have different levels of abstraction (see Figure 1):
from low-level trajectories describing local motion of parts
of a human body to high-level trajectories such as handwrit-
ten characters that have a meaning by themselves. However,
different kind of trajectories have a common and important
property: they are time-structured patterns.

With the recent introduction of wearable cameras a new
chapter in computer vision called egocentric vision has
emerged where the user is the center of the action. A dis-
tinctive characteristic of this new paradigm relative to the
classic third-person vision is that hands are very present in
the scene [6, 14]. As these wearable sensors lack a key-
board, an interesting way to communicate with them would
involve using our hands. A natural way of doing this would
consist in writing with our fingertip in front of the camera.
We can think of the fingertip motion as a spatio-temporal
trajectory in mid-air which can represent, for instance, a

Hyung Jin Chang’ Ismael Serrano

Oscar Deniz!  Tae-Kyun Kim'
tUniversity of Castilla-La Mancha

{ismael.serrano, oscar.deniz}@Quclm.es

o L4
Figure 1. Two examples of spatio-temporal trajectories. On the
left, trajectories representing human motion. On the right, a char-
acter "a’ written in the mid-air using the fingertip and an egocentric
Sensor.

handwritten character in the English alphabet (see Figure
2). This could lead to many different new applications in
the domains of human-computer interaction or augmented
reality. If we are able to recognize the fingertip written tra-
jectories in mid-air we can use them as text input for the
device. If we are able to not only recognizing them but
localize them, we could, for instance, write notes in a vir-
tual blackboard. Note that these two applications need real-
time performance. Motivated by the aforementioned chal-
lenges, we address the problem of recognizing and local-
izing fingertip written characters in mid-air. We propose a
new framework based on Hough forests [8] that we eval-
uate presenting the first public dataset of fingertip written
characters in mid-air recorded with an egocentric sensor.

Decision forests-based methods have been very success-
ful and popular in many computer vision tasks because
their efficiency both in training and testing, their inher-
ently multi-class handling ability and their capacity to han-
dle overfitting. Their efficiency in prediction comes with
the cost of assuming independence in the output variables,
which is not always the case for sequential data. In the in-
terest of enforcing temporal coherence in our forest frame-
work, we introduce the concept of transition. We define a
transition as the probability of observing the current out-
put of the forest taking into account previous observations.
Thus, our current prediction will consider what has been
previously observed. Based on Hough forests, our method
inherits the benefits of a decision forest model while enforc-



ing the temporal coherence of predictions. Finally, we show
that our framework formulation is general enough to deal
with different types of sequential data proving its suitability
for general human action recognition.

In summary, our main contributions are three-fold:

e A new general framework based on Hough forests
which can simultaneously recognize and localize
spatio-temporal trajectories.

e Introduction of temporal context in a decision forest-
based classifier in the form of transitions.

e The first public dataset containing fingertip written
characters in mid-air in egocentric viewpoint.

2. Related Work

Decision forests for structured prediction: There has
been some preliminary work using decision forest meth-
ods for spatio-temporal data modeling in diverse applica-
tions. Spatio-temporal relational probability trees [18] were
proposed for weather process understanding, however the
nature of their data is very different from ours. More re-
lated to our work, some approaches used tree-based meth-
ods for human action recognition [20, 35, 8, 10]. [20] pro-
posed simultaneous action recognition and localization us-
ing local motion-appearance features method and clustering
trees. [35] also used codebooks for building spatio-temporal
histograms and matching them using histogram intersec-
tions and a SVM classifier. On the other hand, decision
forests methods have been also used for directly mapping
spatio-temporal features to space-time location and class la-
bel. In [8], dense spatio-temporal cuboids were extracted
and each of them voted independently for a hypothesis in
space, time and class in the Hough space. [10] proposed
a spatio-temporal forest for detecting the action of finger
clicking from an egocentric viewpoint, but they only con-
sidered one simple action with not much temporal structure.
These approaches rely on the premise that spatio-temporal
structure is adequately embedded in the feature level. In
practice, noisy and incoherent labels are observed mainly
caused by the output independence assumption. This is
a general problem in structured prediction using decision
forests and some authors have proposed solutions in other
computer vision areas such as semantic image segmenta-
tion [21, 29, 30, 23, 12]. [21, 29] exploited the hierarchical
nature of the trees in order to cluster similar samples and
extract context information. [30, 23] used graphical models
in top of decision forest predictions, while [12] proposed
directly modelling the context within the forest in order to
have smooth pixel-wise labellings. [3] introduced tempo-
ral context in a decision forest framework by warping map
confidences using optical flow for body pose estimation.

Figure 3. Dense cuboid patches in Hough forest (orange) and tra-
jectory patches in Transition Hough forest (blue) in two different
scenes of punching and kicking from UT-interaction dataset [27].

Fingertip writing in mid-air: Recognizing fingertip
written trajectories in mid-air has been previously explored
in the last decades highly depending on the available tech-
nology and mainly from a third person viewpoint [24, 1,
28, 7, 31]. From an egocentric point of view the problem
remains quite unexplored; however there are some early ap-
proaches related to our application [16, 11, 9]. [16] with the
help of a wearable computer recognized fingertip trajecto-
ries using a spline-based matching algorithm. [11] and [9]
recorded fingertip writing gestures with a webcam point-
ing a desktop and used DTW-based classifiers, but no real-
time performance was achieved and localization was not
performed.

Trajectories for human action recognition:
Trajectory-based methods [17, 19, 32, 33, 34] for hu-
man action recognition have been very popular in the last
years mainly to its good results in a variety of datasets. [19]
extracted trajectories using an interesting point detector
and proposed a graphical model to model the velocities
of those trajectories. [17] extracted trajectories using a
KLT tracker and clustered them in a bag of words fashion
[22]. [32] densely sampled the and tracked trajectories
extracting local descriptors such as HOGHOF [13] and
MBH [5] along them. Densely sampling trajectories leads
to the problem of capturing non meaningful trajectories;
a problem that can be attenuated modelling the camera
motion [33] or automatically learning the feature represen-
tation [34]. After extracting trajectory-sampled features,
[32, 33, 34] use a bag of words model [22] losing important
structural information.

3. Overview of the method
3.1. Hough forests for spatio-temporal trajectories

A spatio-temporal trajectory is a set of time-ordered
space tracked points P; = (x4,y:) where t is
the frame number. A trajectory can be written as
(Py, Piy1, ..., Py —1) where L is the length, in frames, of
the trajectory. We store our trajectory data in the form of
patches {P; = (f(F;), ¢i,d;)} where f(P;) are appearance



Figure 2. An example of capturing a spatio-temporal trajectory representing the character ’d’ described by fingertip motion.

and motion features for a given point of a trajectory, c; is the
class label and d; is a vector pointing to the spatio-temporal
center of the trajectory in the fingertip writing problem and
to the spatio-temporal center of the action in the human ac-
tion recognition problem.

We formulate the spatio-temporal trajectory recognition
as a multi-class classification problem and action center lo-
calization as regression. To perform them simultaneously,
we build upon Hough forest [8]. An important difference
between [8] framework and ours is that we extract patches
by sampling along trajectories instead of dense sampling
cuboids (see Figure 3).

A Hough Forest is an ensemble of decision trees that,
in addition to classification, they also perform regression.
Each tree in the forest is constructed from a set of patches
extracted along the trajectories {P; }. Tree training starts at
the root and input data is divided and rooted left or right
following a split function. Split candidates are generated
randomly and the best split is chosen based on an objective
function that is minimized. This objective function is ran-
domly chosen between Shannon entropy, which minimizes
class uncertainty, and variance of displacement vectors, a
regression measure that tends to group similar vectors. If
the current node reaches a certain depth or a good split can-
not be found, it becomes a leaf node. At each leaf node
l;, a class histogram p(c|l) is estimated by the proportion
of trajectory patches per class that reached that node. Both
histogram and displacement vectors d; are stored.

During inference, patches are passed through each tree
in the trained forest. Starting at the root of the forest the
patch traverses the tree, branching left or right according to
the split node function, until reaching a leaf node. Using
the stored class distribution and vector displacements at the
leaf nodes, each leaf node votes for its corresponding class
label and spatio-temporal center location. Each patch votes
in a 4D Hough space and the most likely hypothesis can be
found searching the maxima. We refer the reader to [8] for
further details.

3.2. Transition Hough forest

A major drawback of using a decision forest based clas-
sifier for sequential data is that the forest produces each
estimation independently of its temporal context. This as-
sumption can be too strong in the problem of recognizing
spatio-temporal trajectories. For instance, the human action
of punching involves the movement of an arm in a partic-
ular direction and speed. This movement follows a certain
temporal order that makes it different from similar actions
such as pulling.

As presented in the previous section, a Hough Forest re-
duces both class and displacement uncertainty throughout
the tree. The leaf nodes will contain similar patches both in
displacement, feature-space and class, thus it can be seen as
a clusters of similar patches. Such idea of using a decision
forest framework for clustering is not new and it has been
explored in other areas such as semantic image segmenta-
tion (e.g. [21, 29]), but relatively less for action recognition
[35]. From this perspective, we can see a spatio-temporal
trajectory as a time-indexed sequence of codebook values.

Based on this, we introduce our concept of transition.
Our hypothesis is that different classes of spatio-temporal
trajectories will have a different temporal dynamics within
the forest. For example, if we observe that in a given frame
t the trajectory patch P; has reached the node ¢ while in the
previous frame ¢ — 1 the corresponding patch P;_; reached
the node j, we can quantify how likely is the transition from
node j to node i or, more formally, p(n(t) = i|n(t—1) = j)
a certain class. We name this last term as transition prob-
ability borrowed from HMM literature [25]. We define our
transitions for one time step, thus we will ignore the time
index in the following sections. [29] showed that adding
non-terminal nodes while constructing codebooks captured
the hierarchical structure of the tree leading to a better per-
formance. Accordingly, we consider transitions between
both leaf and split nodes. Although in practice trees are
not balanced and transitions can be observed between dif-
ferent levels of the tree, we ignore them maintaining its hi-
erarchical nature considering only same level transitions.
In order to compact this information, we define a transi-
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Figure 4. Process to build the transition matrix. At current frame ¢ we feed the forest with the current trajectory patch P; of class c. We
compare the path through the forest (tree by tree) followed by P, with the one followed by P;_1. We show the transition matrix A(c, !) for
the first two levels of the tree (we do not count the root level). As there are two nodes on the first level and four on the second level, A(c, 1)
will be a 2x2 matrix and A(c, 2) a 4x4. In this example, P;_1 reached the 2nd node on the first level and the 3rd node on the second level.
P, reached the 1st node on the first level and the 2nd one on the second level. Thus, we increase the transition probability from 2nd node to
1st on the transition matrix at the first level and the transition probability from 3rd node to 2nd on the transition matrix at the second level.

tion matrix A(c, () that encode all transitions between nodes
for a given class ¢ and level [ in one time step. Rows of
A(c,l) encode transition probabilities from node 4 to all
the rest of the nodes j in a particular level [ of the tree
and they are normalized defining a probability distribution
(>2;p(n = jln = i) = 1,n € I). See Figure 4 for further
details. Note that we will have a transition matrix for ev-
ery tree in the forest, however we omitted this to make the
notation clear.

In order to incorporate this temporal information into our
predictions, we treat this transition probability as a prior
probability p(c) in a similar way to [29]. We want tran-
sitions to emphasize classes that are likely in a temporal
context and reject unlikely ones. Given two temporal con-
secutive patches from a trajectory, P, and P;_;, we pass
both patches through the forest and each of them reaches
different nodes through each tree of the forest. We ponder
the prediction for P;, p(c|l;), with the (almost independent)
prior probability:

p'(c|li) = p(clls)p(c) (1)

with p(c) defined as the averaged transition probability
Diranss Of all T' trees in the forest soften by a constant o

1 T
p(C) = f Zptarans (Cv k) (2)
k=0

Pirans 1S calculated from our transition matrices defined
above:

1
DPtrans (C, k) = W Z Ak (Ca l) 3)
=0

where D, is the maximum level reached in the k-th tree
by P;_; or P, and W is a factor that ensures probability
normalization. Dy, is not necessarily the total depth of the
tree D as leaf nodes can be found at any level of the tree.

3.3. Implementation details
3.3.1 Fingertip writing trajectories

We extract fingertip writing spatio-temporal trajectories by
tracking the index fingertip in space and time. Instead of
standard RGB video, we decided to use a depth sensor. Us-
ing depth data makes the problems of hand segmentation
and fingertip detection easier. We detect and track the fin-
gertip using the approach of [15] where hand contour is ob-
tained and fingertips are tracked using a distance transform
and a particle filter respectively. Once obtained the spatio-
temporal trajectories, we extract local features that we en-
code in f(P;). These features are extracted using a temporal
sliding window of n. frames. This parameter defines the
length of strokes encoded in patches. Small values of n,
may not allow us to properly capture motion, while large
ones could give us non meaningful information. At each
temporal window, we concatenate the following local fea-
tures: displacement vector between points, curvature, dis-
tance and velocity. Distance and velocity are defined only
between the first and the last point in the window and we
considered both euclidean distance and geodesic distance.
Their temporal derivatives provide us complementary infor-
mation about the writing stroke. Note that for these trajecto-
ries L does not have a fixed size and it will depend on their
category.

3.3.2 Action recognition trajectories

For tracking and extracting features along spatio-temporal
trajectories on video data, we follow the approach from
[33]. We chose this method mainly because its excellent re-
sults and its publicly available code, however other spatio-
temporal trajectory representation would be also valid. In
[33], each trajectory point is tracked at different scales us-
ing optical flow. Tracked points are sampled in small vol-
umes of size n, X n, X n, and rich feature descriptors,
HOGHOF [13] and MBH [5], are extracted. We encode all



this information in our trajectory patches f(F;). In con-
trast to [33], we do not concatenate the descriptors of all
the points in the trajectory nor we average them. Instead,
we treat each point of the trajectory independently and we
store it as a patch. Our trajectories are defined as ensembles
of L independent patches.

4. New dataset: Egocentric fingertip writing

As there exists no public dataset of fingertip written tra-
jectories in mid-air using an egocentric sensor, we recorded
our own one, which we plan to make public for further re-
search. Our dataset is composed of depth video sequences
containing fingertip written trajectories that represent the 26
English alphabet characters (from ’a’ to ’z’). We attached
a depth sensor (Creative* Interactive Gesture Camera) to
a cap in order to be able to record gestures in egocentric
viewpoint. In total, 10 sequences of 26 different characters
performed by a single actor have been recorded (making
a total of 260). Furthermore, we fully annotated the se-
quences with (x, y, t) fingertip positions after our detection
and tracking stage to help research on this direction as well.
See Figure 5 for some examples of our recorded sequences
and Table 1 for further details.

Classes 26 Total frames 15792
Clips 260 | Clips per class 10
Mean clip frames | 60.74 | Resolution 320x240
Min clip frames 27 Max clip frames 154

Table 1. Characteristics of the dataset
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Figure 5. Examples of our new dataset of characters written in
mid-air both projected in 2D space and in 3D space-time.

5. Experiments
5.1. Egocentric fingertip writing

Character recognition: In table 2 we present the perfor-
mance of different methods on our new dataset. All the re-
sults have been obtained performing 10 leave-one-out cross
validation (234 sequences for training and 26 for testing).
We chose empirically a sliding window size of n, = 7.
We first show the results of two classical algorithms for se-
quential data recognition, Hidden Markov Model (HMM)
[25] and Dynamic Time Warping (DTW) [31, 4]. Although
neither of these methods is suitable for our application since
they do not perform localization, we include them for com-
pleteness of this work. Next, we show the results for de-
cision forest-based classifiers: a conventional decision for-
est [2], our framework without transition term and the full
framework. For all forest based algorithms we fixed T' = 8
and D = 25, optimizing cross validated results. We see that
our proposed Transition Hough forest outperform all the
other approaches. Introducing the transition term slightly
improves the accuracy in a 1.5%. Comparing with the con-
ventional random forest, we note that including localization
also helped classification, as it was already pointed in [§].

Recognition | Method Accuracy (%)
HMM [25] 66.4
DTW [31] 78.5
S;zra;itggn Decision forest [2] 79.6
g Trajectory Hough forest 90.4
Transition Hough forest 91.9

Table 2. Recognition performance of fingertip writing.

From the confusion matrix (Figure 6), we can observe
that most errors came from similar characters such as "a-d’,
'm-n’, g-q’ and ’v-w’, which are all of them very similar
and sometimes difficult to recognize even for humans. We
believe that adding a broader temporal context could help
on these cases.

Character center localization: Our method can also
correctly localize spatio-temporal center of each character
writing by spatio-temporal offset Hough voting. Figure 7
shows some localization results in spatio-temporal space.
As we can see, estimated centers are similar to ground-truth
ones. The writing center information of each character can
be used as an important clue for segmenting each character
in a word or to anchor where the user wrote in an augmented
reality scenario.

5.2. Action Recognition: UT-Interaction dataset

To demonstrate the effectiveness of our proposed method
for human action recognition, we conducted experiments on
a public benchmark: UT-interaction dataset [27]. The UT-
interaction dataset consists in 6 different classes of human-
human interactions in a surveillance scenario: shake-hands,



0 20 100 110 120 130 140 150

100

120

140)

80 100 120 140 160 180

Figure 7. Character center localization results. Small cyan crosses are displacement voting points. Cyan circles are estimated center
positions of each character and red stars ground-truth center locations.
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Figure 6. Confusion matrix of character recognition results by our
proposed method

point, hug, push, kick and punch (an example of kick and
punch is shown in Figure 3). We used the segmented set 1
of the dataset which contains 10 sequences per each class.
We followed the methodology recommended by the authors
and we performed 10-fold leave-one-out cross validation to
find the average performance.

In table 3 we present the performance of our method
compared to baseline and other state-of-the-art methods.
The parameters for extracting trajectories were the recom-
mended by [33] n, = 2 and L = 15. We used n, = 1,
meaning that a patch was generated for every frame in the
trajectory. We defined our baseline as the Hough forest us-
ing trajectory-based patches and we also compared to the
conventional Hough forest using dense cuboid sampling [8].
Forests parameters are 7' = 4 and D = 35.

We observe that using trajectory sampled descriptors in-
stead of dense cuboids slightly improves the recognition ac-
curacy in a 2%, which is in line with what was reported in
[32]. In top of that, we show that adding our transition term
further improves the performance in a 3.3% from the base-

Method Accuracy (%)
Yu et al. [35] 83.3
Raptis and Sigal [26] 93.3
Zhang et al. [36] 95.0
Hough forest (cuboids) [8] 88.0
Trajectory Hough forest 90.0
Transition Hough forest 93.3

Table 3. Overall recognition performance for set 1 of UT-
Interaction dataset of our method compared to state-of-the-art.

line making it comparable to state-of-the-art performances.
Our approach offers a similar performance to [26] even if
they use more sophisticated medium-level features encod-
ing the pose of humans in scene, which are usually hard to
annotate and obtain. Compared to [36], our method per-
forms not as well as theirs. The main reason for this is
that we rely on very local spatio-temporal context while
in [36] they also consider long range spatio-temporal re-
lations. Finally, we also show the result from [35] where
they also used the clustering capability of a decision for-
est, however important spatio-temporal information is lost
when histogram quantization is performed.

6. Conclusion and Future Work

We have presented a novel framework for recognizing
and localizing spatio-temporal trajectories using a Hough
forest-based classifier and showed that it is general enough
to be applied in different scenarios. We have introduced a
new concept of transition that makes forest predictions sen-
sitive to their output temporal context without losing effi-
ciency. As a future work, we plan to investigate how can we
make these transitions more discriminative within the for-
est, enforcing the transitions at feature level or designing a
novel split criteria that privileges transitions. Furthermore,
we also plan to explore the introduction of long-range tem-
poral context in contrast to only exploiting the context of
time-consecutive patches.
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